wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2018

A LEVEL (NEW) MATHEMATICS – UNIT 4 APPLIED MATHEMATICS B 1300U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

A2 Mathematics Unit 4: Applied Mathematics B

Solutions and Mark Scheme Summer 2018

SECTION A – Statistics

Qu. No.	Solution	Mark	Notes
1(a)	$1 - P(A \cup B)$	M1	M1 Use of $1 - P(A \cup B)$
	$1 - (P(A) + P(B) - P(A \cap B)) = 1 - (0.6 + 0.5 - 0.2) \text{ oe}$	A1	ALTERNATIVE SOLUTION
	= 0.1 (given)		A 0.2 0.3 0.1 October 10.2 Octo
(1)			A1 for completely correct Venn diagram.
(D)	$P(only 1) = P(A) + P(B) - P(A \cap B) \times 2$ $P(only 1) = 0.6 + 0.5 - 0.2 \times 2$ $= 0.7 \qquad \text{oe}$	M1 A1	M1 for 0.4 + 0.3
(c)	$P(B \text{not }A) = \frac{0.3}{0.4}$	B1 B1	B1 for 0.3 as a numerator. FT for numerator only. B1 for 0.4 as a denominator.
	$=\frac{3}{4}$ oe	B1 [7]	сао
2(a)	p + p(1 - p) = 0.64 oe	M1	
	$p^2 - 2p + 0.64 = 0$	A1	
	(p - 0.4)(p - 1.6) = 0	m1	Any correct method for solving
	p = 0.4 or $p = 1.0p = 0.4$	A1	m0 if no working.
(b)	P(Both field 1st Male) =		Alt Method P(Both field[1st Malo)
	$\frac{9}{22}$ si	M1	$= \frac{P(\text{male field } \cap \text{ field})}{1 \text{ st Male}}$
	$\times \frac{12}{32}$ si	M1	$\frac{\frac{2}{33} \times \frac{1}{32}}{\frac{22}{33}}$
	$=\frac{27}{176}=0.1534\dots$	A1 [7]	M1 for $\frac{22}{33} \times \frac{44}{32}$ as a numerator M1 for $\frac{22}{33}$ as a denominator ISW

PMT

- г	א אכ	17
-	- IV	

Qu. No.	Solution	Mark	Notes
3(a)(i)	(Continuous) uniform distribution and Parameters (0,12)	B1	
(ii)	Mean = 6 Variance = 12	B1 B1	SC1 for incorrect distribution with corresponding mean and variance.
(iii)	Valid assumption Eg. Assuming trains are running to time/not late/ any other equivalent	E1	
(b)(i)	$P(9 < X < 12) = 0.88 \times \frac{1}{4}$ (= 0.22)	M1	
	$P(12 < X < 19) = 0.12 \times \frac{7}{12}$ (= 0.07)	M1	
	P(9 < X < 19) = 0.22 + 0.07	m1	m1 for adding their 0.22 and 0.07. Dependent on either M1 awarded.
	= 0.29	A1	сао
(ii)	<i>P</i> (1st train waits between 9 and 19 mins)		
	$=\frac{0.22}{0.29}$	m1	FT for both provided m1 awarded in (b)(i).
	$=\frac{22}{29}=0.7586$	A1	
		[10]	

Qu. No.	Solution	Mark	Notes
4(a)	Valid reason e.g.(Approximately) symmetrical, taller in the middle, tails off at the ends, etc	E1	Do not accept bell curve alone.
(b)(i)	$P(60 \le X \le 70) = 0.26055$	M1	M1 for 0.26055 or 80×'their
	Predicted number = 21	A1	Allow 20.84 or '20 or 21' Use of tables gives $P(60 \le X < 70) = 0.2618$
(ii)	$P(X \ge 90) = 0.041518$	M1	M1 for 0.041518 or 80×'their
	Predicted number = 3	A1	Allow 3.32 or '3 or 4' Use of tables gives $P(X \ge 90) = 0.0418$ Predicted number is 3
(c)(i)	Valid comment e.g.18 is smaller than (predicted) 21 and 6 is bigger than (predicted) 3 so may not be the best model.	E1	Must include reference to model not being ideal/could be improved AND comparison of predicted values and actual
(ii)	Model could be improved by increasing the variance/standard deviation. (This would 'flatten out' the curve. It would lower the middle and lift up the tails.)	E1	values.
(d)	Valid comment. e.g. May not be suitable since the weekly household expenditure on food in Northern Ireland may have a different distribution. e.g. May be suitable as Northern Ireland is part of the UK and has a similar socioeconomic status to Wales.	E1	
		[8]	

5 (a)	p- value for 'Feed Wheat' versus 'Feed Oats' > 0.05	E1	
	Price of Feed Wheat does not seem to be correlated with price of Feed Oats	E1	
(b)	$H_0: \rho = 0$ $H_1: \rho \neq 0$	B1	$H_0: \rho = 0$ $H_1: \rho > 0$
	TS = 0.653	B1	TS = 0.653
	CV = 0.5760	B1	CV = 0.4973
	Since TS>0 5760 Reject H	B1	Since TS>0 4973 Reject H
	Sufficient evidence to suggest there is a	F1	Strong evidence to suggest
	correlation between the prices of feed	L 1	there is a nositive correlation
	wheat and wheat straw		between the prices of feed
	wheat and wheat straw.		wheat and wheat straw
			wheat and wheat straw.
(c)	Appropriate comment implying	E1	
	understanding that the second graph is		
	comparing two wheat products whereas		
	the first is comparing different grains.	F01	
		[8]	

4

SECTION B - Mechanics

Q Solution

6

Mark Notes

Moments about centre

 $8g \times 1 \cdot 4 + 2g \times x = 15g \times 0 \cdot 8$

 $11 \cdot 2 + 2x = 12$ $2x = 0 \cdot 8$ $x = 0 \cdot 4$

 $AD = 2 - 0 \cdot 4 = 1 \cdot 6 \text{ (m)}$

M1 dim correct equation No missing forces

B1 Any correct moment with pivot clearly indicated.A1 correct equation

A1 cao

Total [4]

Alternative solution

Moments about A (or B, C, D, E) $8g \times 0 \cdot 6 + 2g \times x + 15g \times 2 \cdot 8 = 2R$ (M1)No missing forces(B1)Any correct moment with
pivot clearly indicated.R = (8 + 2 + 15)g(= 25g = 245)(A1) $4 \cdot 8 + 2x + 42 = 50$ (A1)cao

Q	Solution	Mark	Notes
7(a)	R = kv		
	$0\cdot 08 = 0\cdot 2k$		
	$k = 0 \cdot 4$	B1	
	N2L applied to object, upwards positive	M1	dim correct eqn, all forces
	$0-0\cdot 5g-R = 0\cdot 5a, \qquad a = \frac{\mathrm{d}v}{\mathrm{d}t}$		
	$\frac{\mathrm{d}\nu}{\mathrm{d}t} = -9 \cdot 8 - 0 \cdot 8\nu$	A1	convincing
	u	(3)	
7(b)	$\int \frac{\mathrm{d}v}{9\cdot 8+0\cdot 8v} = -\int \mathrm{d}t$	M1	separating variables
	$\frac{1}{0\cdot 8}\ln 9\cdot 8 + 0\cdot 8\nu = -t + (C)$	A1	and an attempt to integrate
	when $t = 0, v = 24$	m1	used
	$C = \frac{1}{0.8} \ln 29 $	A1	
	$-0 \cdot 8t = \ln \left \frac{9 \cdot 8 + 0 \cdot 8\nu}{29} \right $		
	$29e^{-0\cdot 8t} = 9\cdot 8 + 0\cdot 8v$	m1	inversion
	$0\cdot 8v = 29e^{-0\cdot 8t} - 9\cdot 8$		
	$v = 36 \cdot 25e^{-0.8t} - 12 \cdot 25$	A1 (6)	сао
7(c)	At highest point, $v = 0$	M1	used
	$t = 1 \cdot 25(\ln 29 - \ln 9 \cdot 8)$		
	$t = 1 \cdot 356$ (s)	A1 (2)	сао
		Total [11]	

Q Solution

8(b)

Mark Notes

20°

15N

6**0**g

$R = 60g\cos 20^{\circ}$	B1	si			
$F = 0.3 \times R$ (= 165 · 761)	B1	si $(F = 18g\cos 20^{\circ})$			
Apply N2L to object, downwards +ve	M1	dim correct equ, all forces			
$60g\sin 20^\circ - F - 15 = 60a$	A2	-1 each error			
a = 0.3391 (ms ⁻²)	A1 (6)	сао			
Resultant tractive force up plane	M1	dim correct, all forces			
$= 350 - 60gsin20^\circ = 148 \cdot 892$	A1				
Limiting friction = $165 \cdot 761 \dots$					
Resultant tractive force < Limiting friction					
Object does not move up the plane.	A1 (3)	convincing			
(3) Total [9]					
Alternative solution to (b)					
(Maximum) force that can be applied up the slope (without object slipping)	(M1)	dim correct, all forces			
$= 60g\sin 20^\circ + 0.3 \times 60g\cos 20^\circ = 366 \cdot 86 \dots$	(A1)				
$T = 350 < 366 \cdot 86 \dots$					

Object **does not** move up the plane.

(A1) convincing argument with reference to max/limiting friction

Q	Solution	Mark	Notes
9(a)	For <i>P</i> , initial horizontal velocity = $24 \cdot 5 \cos 30^{\circ}$	B1	si
	$= 12 \cdot 25\sqrt{3}$		
	Initial vertical velocity = $24 \cdot 5 \sin 30^{\circ}$	B1	si
	$= 12 \cdot 25$		
	For time of flight, use $s = ut + \frac{1}{2}at^2$ with		
	$s = 0, a = (\pm)9 \cdot 8, u = (\pm)12 \cdot 25$	M1	ft u_{vert}
	$0 = 12 \cdot 25t - 4 \cdot 9t^2$	A1	oe, ft u_{vert} provided direction opposes g
	$t = 2 \cdot 5$		
	Range, $R = 12 \cdot 25\sqrt{3} \times 2 \cdot 5 = 30 \cdot 623\sqrt{3}$ = 53(\cdot 044) (m)	A1 (5)	сао
9(b)	Horizontal distance travelled by $P D_P$		
	$= 12 \cdot 25\sqrt{3} \times t$		
	Horizontal distance travelled by $Q D_Q$		
	$= 12 \cdot 25\sqrt{3} \times (t-1)$	B1	both distances ft u_{horiz} from (a)
	$D_P + D_Q = R$ $D_P + D_Q = 30 \cdot 623\sqrt{3}$	M1	ft R and u_{horiz} from (a)
	$12 \cdot 25\sqrt{3} \times t + + 12 \cdot 25\sqrt{3} \times (t-1) = 30 \cdot 623\sqrt{3}$		
	t = 1.75	A1	сао
OR	$H_P = 12 \cdot 25t - 4 \cdot 9t^2$		
	$H_Q = 12 \cdot 25(t-1) - 4 \cdot 9(t-1)^2$	(B1)	both distances ft u _{vert} from (a)
	Collision occurs when $H_P = H_Q$	(M1)	used. ft u_{vert} from (a)
	$t = 1 \cdot 75$	(A1)	сао
	For height, use $s = ut + \frac{1}{2}at^2$ with		
	$a = -9 \cdot 8, u = 12 \cdot 25, t = 1 \cdot 75$	M1	u must oppose g ($t - 1 = 0 \cdot 75$)
			ft $t, t - 1$ ($t > 1$)
	$s = (12 \cdot 25)(1 \cdot 75) + \frac{1}{2}(-9 \cdot 8)(1 \cdot 75)^2$		
	Height, $H = 6 \cdot 4 (3125) (m)$	A1 (5)	сао
	Т	otal [10]	

© WJEC CBAC Ltd.

8

Q Solution	
------------	--

10(a) $\mathbf{F} = m\mathbf{a}$ M1 used $\mathbf{a} = -\frac{3}{2}\mathbf{i} + 2\mathbf{j} - \frac{5}{2}\mathbf{k}$ $|\mathbf{a}| = \sqrt{\left(-\frac{3}{2}\right)^2 + (2)^2 + \left(-\frac{5}{2}\right)^2}$ m1 $|\mathbf{a}| = \frac{5\sqrt{2}}{2} = 3.54$ (ms⁻²) A1 cao (3)

Mark

Notes

Alternative solution to (a)

$$|\mathbf{F}| = \sqrt{(-3)^2 + 4^2 + (-5)^2} = \sqrt{50}$$
 (M1)

$$F = ma$$
 (m1) used

$$|\mathbf{a}| = \frac{5\sqrt{2}}{2} = 3.54 \text{ (ms}^{-2})$$
 (A1) cao

10(b) Use
$$\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^{2}(+\mathbf{r_{0}})$$

with $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, $\mathbf{a} = -\frac{3}{2}\mathbf{i} + 2\mathbf{j} - \frac{5}{2}\mathbf{k}$ M1
 $\mathbf{r} = (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \times 2 + \frac{1}{2}\left(-\frac{3}{2}\mathbf{i} + 2\mathbf{j} - \frac{5}{2}\mathbf{k}\right) \times 2^{2}$ A1
 $\mathbf{r} = (6\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}) + (-3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$
 $\mathbf{r} = 3\mathbf{i} - 3\mathbf{k}$
position vector = $(3\mathbf{i} - 3\mathbf{k}) + (2\mathbf{i} - 7\mathbf{j} + 9\mathbf{k})$
position vector = $5\mathbf{i} - 7\mathbf{j} + 6\mathbf{k}$ A1 cao
(3)
Total [6]

Alternative solution to (b)

$$\mathbf{v} = \int \mathbf{a} \, dt = \left(-\frac{3}{2}\mathbf{i} + 2\mathbf{j} - \frac{5}{2}\mathbf{k}\right)t + \mathbf{v}_{0}$$
$$= \left(-\frac{3}{2}\mathbf{i} + 2\mathbf{j} - \frac{5}{2}\mathbf{k}\right)t + (3\mathbf{i} - 2\mathbf{j} + \mathbf{k})$$
$$\mathbf{r} = \int \mathbf{v} \, dt = \left(-\frac{3}{2}\mathbf{i} + 2\mathbf{j} - \frac{5}{2}\mathbf{k}\right)\frac{t^{2}}{2}$$
$$+ (3\mathbf{i} - 2\mathbf{j} + \mathbf{k})t + (\mathbf{r}_{0}) \quad (M1)$$
$$= \left(-\frac{3}{2}\mathbf{i} + 2\mathbf{j} - \frac{5}{2}\mathbf{k}\right)\frac{t^{2}}{2} + (3\mathbf{i} - 2\mathbf{j} + \mathbf{k})t$$
$$+ (2\mathbf{i} - 7\mathbf{j} + 9\mathbf{k}) \quad (A1)$$

At t = 2, r = 5i - 7j + 6k

attempt to integrate twice v_0 must be present in v

oe

cao

(A1)

1300U40-1 WJEC A LEVEL (NEW) MATHEMATICS – UNIT 4 APPLIED MATHEMATICS B SUMMER 2018 MS

© WJEC CBAC Ltd.